123,486 research outputs found

    An Algorithmic Approach to Quantum Field Theory

    Full text link
    The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.Comment: 44 pages, to be published in IJMP

    Algorithmic statistics: forty years later

    Full text link
    Algorithmic statistics has two different (and almost orthogonal) motivations. From the philosophical point of view, it tries to formalize how the statistics works and why some statistical models are better than others. After this notion of a "good model" is introduced, a natural question arises: it is possible that for some piece of data there is no good model? If yes, how often these bad ("non-stochastic") data appear "in real life"? Another, more technical motivation comes from algorithmic information theory. In this theory a notion of complexity of a finite object (=amount of information in this object) is introduced; it assigns to every object some number, called its algorithmic complexity (or Kolmogorov complexity). Algorithmic statistic provides a more fine-grained classification: for each finite object some curve is defined that characterizes its behavior. It turns out that several different definitions give (approximately) the same curve. In this survey we try to provide an exposition of the main results in the field (including full proofs for the most important ones), as well as some historical comments. We assume that the reader is familiar with the main notions of algorithmic information (Kolmogorov complexity) theory.Comment: Missing proofs adde

    Simulating lattice field theories on multiple thimbles

    Full text link
    Simulating thimble regularization of lattice field theory can be tricky when more than one thimble is to be taken into account. A couple of years ago we proposed a solution for this problem. More recently this solution proved to be effective in the case of 0+1 dimensional QCD. A few lessons we can learnt, including the role of symmetries and general hints on algorithmic solutions.Comment: 8 pages, 2 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, Granada, Spai

    Around Kolmogorov complexity: basic notions and results

    Full text link
    Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. There are several textbooks and monographs devoted to this theory where one can find the detailed exposition of many difficult results as well as historical references. However, it seems that a short survey of its basic notions and main results relating these notions to each other, is missing. This report attempts to fill this gap and covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness (Martin-L\"of randomness, Mises--Church randomness), effective Hausdorff dimension. We prove their basic properties (symmetry of information, connection between a priori probability and prefix complexity, criterion of randomness in terms of complexity, complexity characterization for effective dimension) and show some applications (incompressibility method in computational complexity theory, incompleteness theorems). It is based on the lecture notes of a course at Uppsala University given by the author

    Tame Class Field Theory for Global Function Fields

    Full text link
    We give a function field specific, algebraic proof of the main results of class field theory for abelian extensions of degree coprime to the characteristic. By adapting some methods known for number fields and combining them in a new way, we obtain a different and much simplified proof, which builds directly on a standard basic knowledge of the theory of function fields. Our methods are explicit and constructive and thus relevant for algorithmic applications. We use generalized forms of the Tate-Lichtenbaum and Ate pairings, which are well-known in cryptography, as an important tool.Comment: 25 pages, to appear in Journal of Number Theor

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard
    • …
    corecore